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1. INTRODUCTION

A problem of general interest is to be able to use a set of L beams, steered and focused
respectively at the bearing-range pairs [61, R1], [f2, Ra], -+ [0L, RL] to approximate a beam
steered and focused at a given angle-range pair [0, Ro]. A problem of particular interest is
to be able to use L beams focused at infinite range (plane wave) to approximate the beam
steered and focused at the angle-range pair {6y, Ro).

To do this, a set of L appropriate coefficients, which are complex in general, must be
computed and then used to scale and combine the beams to generate an approximation of the
beam in question. These coefficients are derived in this report via mean square error (MSE)
minimization. Also; the number of coefficients needed for a given error value is examined as
a function of frequency and focusing range. The beam interpolation scheme is applied to the
K-w beamformer.

Throughout, vectors are denoted by bold, lowercase letters and matrices by bold, upper-
case bold letters. All others are scalars. The complex notation j (where j = +/—1) is used.
The superscript (T) is used to denote vector and matrix transpose.
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2. GENERAL OBSERVATIONS

Almost certainly, the steering angle 6y of the approximated beam must lie inside the
bearing span of approximating beams [0;,8].

The choice of beam bearing spacing for the set of reference beams is critical for the
proper formation of the desired beam steered/focused at a given bearing/range. If the ref-
erence beams are spaced too far apart in bearing, then information is lost and the desired
beam will not be properly formed. If, on the other hand, the reference beams are spaced
too closely together in bearing, then the information provided by each beam becomes highly
correlated. This usually results in large positive and negative complex coefficients, leading
to numerical instability.

The ideal spacing for a given frequency occurs when the beam responses are orthogonal.
For a fixed beam spacing this condition can be satisfied for only one frequency. For the
other frequencies, the reference beam set will either be under-sampled or over-sampled. For
the case of a K-w beamformer, the beams in K (bearing) space are always orthogonal for
all frequencies, which follows from the Fourier transform property. This makes the K-w
beamformer an ideal choice for implementing this technique. This is especially true when
the reference beam set is formed at infinite range.
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3. COEFFICIENT DERIVATION

3.1 FORMULATION OF THE MEAN SQUARE ERROR (MSE)

A steered and focused narrowband beampattern for an N-channel line array is given by

%wieﬁ?ff[ﬁ(eﬁ)—ﬁ (60,Ro)] (1)
i=1
The time delay 7;(6, R) is the time required for a spherical wavefront of radius R to travel
at a speed c from the center of the array (at coordinate 0) to element 7 (at coordinate z;).
Denoting the distance between the wavefront source to element ¢ by R; (see figure 1), one

has

(0, R) = R_cRi.

Point of Steer/Focus

zZe

1
I
|

z |
X

Figure 1. Time Delay Computation for a Curved Wavefront

By using the law of cosines, R; can be expressed as a function of z; and the source range
R. Completing the square and factoring (R — z; cos §) out, the time delay becomes

; 2
(6, R) = %{R—(R—xicow) 1+(—=——Ri;":oia)],

z; cos 6 z?sin? 0 (2)
~ - s R> x;
c 2¢(R — z; cos b) :
Nrvn, s’ N ~ ',
plane curvature

where




7i(0, R) = Target time delay for a target at bearing 8 and range R,
7i(fo, Ro) = Beamformer time delay for a steering angle 6y and focus range Ry,

z; = Coordinate of element ¢ with respect to a given reference,

c = Speed of sound (beamformer and actual speeds of sound are assumed equal),
f = Target frequency, and

w; = Shading weight applied to channel i, normalized so that Yw; = 1.

The approximation in equation (2) is the basic I +a ~ 1 + § for a <« 1, which is true in
this case for ranges large enough when compared to array dimensions.

The generally complex coefficients that will be used to combine the L-beams to approxi-
mate a single beam, can be derived by minimizing the MSE between the actual beam desired,
steered to 6p and focused at Ry, and the weighted sum of L beams, steered to 61,62, -,07]
and focused at [Ri, Ry, - -, Ry], respectively. However, to simplify derivation and imple-
mentation, minimization of the sum over elements of the individual MSEs for the respective
actual versus interpolated beams will instead be performed. Denoting the interpolation coef-
ficients by [ + 781, a2 + jB2, -+, ar + jBL], the sum over elements of the individual MSEs,
which must be minimized over the coefficient ap + jBp, can be expressed by

2

N L

E= Z wiej27rf[Tz‘(9,R)-’rz‘(Go,Ro)] _ Z(ap +jﬁp)eﬂﬂf[ri(e,R)—n(Op,Rp)] ) (3)
i=1 p=1

It is assumed in equation (3) that the sensor elements of the L beams —which aré weighted
and summed to produce the new beam~ are unshaded and, hence, the resultant coefficients
will include (i.e., perform), the shading, in addition to the focusing-steering operations. For
the case of obtaining coefficients that do not include shading, a slighly different vector/matrix
definition must be used in the solution equation (9), and this definition is given in appendix A.

Factoring out e/27f17:(6:R)~7:(60.Ro)] from the inner terms of equation (3) and replacing
the magnitude operator by the equivalent product of the inner quantity and its conjugate,

and using the substitution v;(p) = 27 f[7;(6o, Ro) — 7:(6p, R,)], one obtains

N L L
E = Z w; — Z(O‘p +j/@p)eyv,-(p) w; — Z(aq _ jﬂq)e—jvi(q) :
i=1 L p=1 a=1
N T L . L |
= Z ’wé2 — W; Z(Oéq —-jﬁq)e—]vi@) — w; Z(ap +j13p)e_1vi(p)
=l =1 p=1
L L .
+ 35" S (ap + 38o) (g — )i riP~ui@] | @
p=1g=1




Define the L x 1 vectors a, 3, ¢, and s as follows:

a = [al,a27"'7aL]T’

/3 = [/617/32a 76L]T T
c = [szcosvz(l szcosvz szcosvz } , (5)

T
s = [Z w; sin v(1 Zw, sin v;(2 sz sin v; ( J .
i=1

In addition, define the L x L matrices C and S so that

N
[C]pq = ZCOS[Ui(Q)‘—’Ui(p)] = [C]qp7
(6)
[Sl,, = Zsm[w -vi(p)] = =[Sl

Also, for general L x 1 vectors a, b with pt* component notations [a], and [b],, respectively,
and the L x L matrix A with pg*® component notation A, one has

L
Z [a]p [b]p = aTb7
p=1

and

ZZ[a]p[b [A],, = aTAb.

p=1lg=1

Finally, using the Euler identity e/” = cos+y + jsin~ to convert all complex exponentials to
cosines and sines, the scalar E in equation (4).can be expressed in vector notation as

N .
E= Zw? —2aTc+28%s+ aTCa + BTCB - aTSB + BT Sa. (M

i=1
3.2 MINIMIZATION OF MSE AND DERIVATION OF COEFFICIENTS

To minimize F as a function of o and B, the derivative of E with respect to a and 8
is computed and set to zero. The vector and matrix gradients identities of Scharf [1], which
will be used in minimization, are repeated here for convenience:

ZbTx = £xTb = b,
and

%XTAx = 2Ax,

where A, an L x L matrix, and b, an L X 1 vector, are independent of x, an L X 1 vector.
Setting %E =0 and 5%E = 0 gives




Ca-8S8 = c,
Sa+Cg

Solving equations (8) for a and 3, one gets

I
I
n

a = (C+8SC~1S)"(c~SCls)
:3 = _C—l(s + sa)7

bl

and the coefficients are the L x 1 complex vector o + iB.

(8)




4. APPLICATION TO LINE ARRAY K-

4.1 K-w BACKGROUND

The digital K-w, or wavenumber-frequency, field is generated by way of a two-dimensional
Fast Fourier Transform (FFT) over time and space. The temporal FFT is applied on an Neg-
block of the sampled channel output, where Ng; is a radix-two number. Usually, the method
of overlap-and-save is used for the time-series data. The spatial FFT, however, is applied
along elements, where zero-padding is usually used to increase the number of elements N to
the radix-two number Mg, for FFT application. Care must be taken, however, when com-
puting the matrices C and S in equation (6) after zero-padding the array elements, to set
the matrix entries corresponding to the padded zeros to zero.

The relationship between K-w beamforming, which is the two-dimensionald discrete
fourier transform (DFT) over space (elements) and time (element outputs), and time-delay
beamforming arises from the similarity between the types of beamforming and the DFT
equations. For a line array with IV elements indexed i, equi-spaced at distance d, and shaded
by w;, the planewave beamformer output for an incoming source signal z;(t) measured at
element ¢ is expressed by

N
Z W;T; [t - T; (9)], (10)
i=1
where the beamformer time-delay for a planewave steered to angle 6 is
N+1
Ti(e).—_-i-( ; ——i)dcose, i=1,2---,N. (11)
L —

sz .
Applying, first, the temporal Fourier transform to the beamformer in equation (10),
substituting for 7;(¢) in equation (11), and shifting the index ¢ from the range [1, N] to
[0, N — 1] yields '

N-1
e—J2rf izt 4 cos6 Z wz_Xi(f)eﬁvrf%icosG, (12)
. i=0
where f is the frequency variable and X;(f) is the temporal Fourier transform of the signal
.’I,‘i(t).

To implement the sum over elements in equation (12) using the spatial Mg;-length FFT,
with Mg, — N zero padding, the following change of variables must be performed:

d k
f-c-cosé)— M—f;,:




which, for a target at the array design frequency (A = 2d = ¢/ f), or any other smaller fre-
quency, will lead to a k € [——A—/fzﬂ, 1\_/12&] Negative values for & indicate 8 > 90°, while positive
ones indicate 6 < 90°; k = 0 indicates a broadside target. Since, however, the FFT considers
the integer range [0, Mg, — 1], the 6 > 90° values will appear in the range [Mg; /5, Mg), while
the § < 90° values will appear in the range [0, Mg,/ — 1].

Going back to the FFT implementation of K-w, after substituting N with the radix-2
Mg, wi X;(f) with y(i) for convenience, and the values of k from equation (13), equation 12
representing the K-w field X (k, f) becomes

o Mgy=1, M1 o ik
X(k,f) = "B Y (i) (14)
i=0
To implement equation (14) via a forward FFT, the index ¢ must first be flipped from
[0, Mg — 1] to [—(Mg — 1), 0]. Then, performing the index substitution i — i — (Mg — 1)
and factoring the non-index-dependent phase out of the summation, equation (14) becomes
Mg, —1, Mg—1 ik

X(k,f) =" M "3 y(M — 1= i), (15)

=0

which may be implemented via a forward FFT. The term y(Mg — 1 — i) represents a flipped

version of y(¢), which is easily obtained by applying the spatial FFT with the element order

reversed.

For the frequency axis, the usual bin-to-frequency formula is used:

where f is the frequency of interest corresponding to bin i, Fy is the temporal sampling
frequency, Ng; is the FFT length, and [ = 0,1,---, Ng ~ 1 is the frequency bin index.

Each point of the K-w field defined by its coordinates, frequency bin = [ and wavenumber
bin = k, represents a frequency filter that allows targets at frequency corresponding to bin
t and a spatial filter that allows targets at bearing obtained by substituting & in equation (13).

The location of the spatial filter is a function of the frequency of interest. For different
frequencies f = c¢/), a given maximum response axis (MRA) corresponds to different k values
defined by equation (13). More specifically, equation (13) prescribes a linear relationship
between the frequency (¢c/)) and wavenumber k. Thus, a broadband target with bearing 6
appears in the K-w spectrum on a straight line defined by
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k—-{ Mgdcost 0° < 6 <90° (k=0,1,--+, Mg /2 — 1), (16)

MHMﬁt 90° < § <180° (k= Mg/2, Mg/2+1, -, Mg, — 1),

where f is the frequency variable.

4.2 FOCUS RANGE VERSUS MRA FORMULA

When designing different sets of focus ranges, it is of interest to keep the scalloping loss
between neighboring range sets fixed. The width of the aperture used for focusing determines
its range sensitivity. Since the effective width of the aperture seen by a target located at
bearing @ is a function of sin, and since a curvature across an aperture (i.e., range sensitiv-
ity) varies as a function of the square of the aperture width, a focusing range that varies as
a function of sin?(MRA), and hence &, must be devised.

Furthermore, provided that the quantity R — z; cosé in equation (2) is not significantly
different from R (i.e., R >> z; cos#), which is true at not-so-oblique bearings, then the time
delay can be viewed approximately as a linear function of inverse range — a fact that must
also be used in designing focusing range locations. Thus, the scalloping loss can be kept con-
stant between range sets by maintaining a constant distance between consecutive focusing
ranges in inverse range (i.e., El{ - ﬁ = constant). This distance, however, while designed
to remain constant across ranges, must also be made to change as a function of sin?(MRA),

for the reasons explained above.

Utilizing this information, a particular formula was designed as follows:

Rmaxsm 2(MRA) 45° < MRA < 135°

NFR r
FR= Rmaxsﬁ;—(ﬁ? MRA < 45° r =1 (closest),2,- - -, Npr (farthest), (17)
Rpas S350 MRA > 135°

where Npg is the number of focusing range sets desired and Rpyax is the maximum value of
focusing range allowed for all MRA and 7, where r is the range set index. Equation (17)
is illustrated in figure 2 for Rpy.x = 18,000 yards and Npgr = 5. An infinite number of
realizations is possible. If the spacing between consecutive focusing ranges is kept constant,
there remains one degree of freedom, which is the location of one of the focusing ranges.
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Focus Range Sets vs. MRA Focus Range Sets vs. MRA

RANGE (KYd)
INVERSE RANGE (1/KYd)

L
150

L
50

100
MRA (Deg)

Figure 2. Siz Sets of Focusing Ranges as a Function of
Beamformer MRA, Expressed in Range and In-
verse Range

4.3 USING K-w VALUES OUTSIDE THE ACOUSTIC CONE

To perform the focusing and/or interpolation, points outside the acoustic cone (waves
flowing below the speed of sound) must be used. Such points will produce a cos(6) in the
k — 0 equation that is greater than one in absolute value. This can be dealt with, since in the
equations needed to obtain the coefficients, such as the time-delay and the range-vs-bearing
equations, only the sin?(6) is needed, which can be replaced by 1 — cos?(6).

4.4 K-w APPLICATION

The K-w field obtained by the two-dimensional FFT method briefly described above
is the infinite-range K-w. For a given frequency (bin 4p) and look direction 6y (bin kg =
Mgidcosg/N), it is of interest to use different neighboring points (beams) along the k-axis
(i.e., differently steered beams focused at infinity) to produce a differently focused beam at
the same point (frequency and steering bearing) of interest. So, for K-w point (g, ko), it is
of interest to use the L infinitely focused points (t0, ko), (10, ko £ 1), (40, ko £ 2),..., selected
around (ig, ko), but not necessarily symmetric in k about ko, in an interpolation scheme like
the one described above, to replace the original infinitely focused point at (ip, kg) with a new
one focused at a prescribed range.

The interpolation scheme derived in section 3 was implemented for different values of L
for a long line array with equally spaced elements. Target frequencies of F,/4 and Fs/16,
where Fy = 3.22 of the array design frequency and MRA location ~ 61°, were selected so
that the target is located exactly on a K-w bin. The resultant beampatterns — exact versus
interpolated — are overlaid, showing the accuracy of the scheme as a function of the number

12




of interpolation points. The target was swept in bearing at the MRA-varying range defined
by equation (17) for the two extreme range-focusing cases of » = 6 (farthest) and r = 1
(closest), with Nygr = 6, as shown in figure 2. The exact-beampattern’s focusing range was
identical to target range in each case. The technique is illustrated in figure 3. Simulation

results for different numbers of interpolation coefficients and frequencies are shown in figures
4-11.

Narrowband Beampattems (t=Deslgn, MRA=60 FR=6750Yds)
10 T T T T T T T T

-10

Power (dB)
&
o

1
W
O

------ 7 Infinitely Focused B A X i
— Properly Focused H :
: : Interpolated (27 Coeffs.) : :
-60 i i " " : n ) i ;

55 56 57 58 £ 61 62 63 64 85

80
Bearing (Deg)

Figure 3. Illustration of MSE Minimization Method
for Interpolating 27 Beams FEqui-Spaced in
Wavenumber Space and Infinitely Focused to a
Range Matching the Target’s at 6750 Yards
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Figure 10. Time-Delay Focused (r = 1, Figure 11. Time-Delay Focused (r = 1,
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The error between the interpolated infinitely focused beampatterns and the actual beam-
pattern, given by equation (7), is computed using the optimal values of o and £ for different
numbers of coefficients L and different desired focusing ranges Rg. The result is plotted for
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two different target frequencies (F,/4 and F, /16)
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5. CONCLUSIONS

As expected, the larger the number of coefficients used to interpolate, the better the
resultant beam approximation. In addition, it is clear from figures 4-13 that a lower number
of interpolation coefficients is required at lower frequencies (under similar circumstances)
and vice versa. Furthermore, as shown in figures 12 and 13, the number of interpolation
coefficients also increased as the focusing range became smaller. These observations prompt
the need to use a different number of coefficients for different frequency bands. Furthermore,
rather than using infinitely focused beams to interpolate to the other Nrr ranges, it would
be more advantageous to use beams focused at range Nrg/2 (Nrgr even) and then interpolate
up/down to the farther/closer desired focusing ranges. As expected, however, if the focused
beams formed at range Nyr/2 were originally formed from infinite focus range ones, then
errors in those interpolations will be compounded in further interpolations. It is important
to note that the error computed in equation (7) is not the only criterion needed to determine
the number of coefficients. The beampatterns, with their sidelobe level and mainlobe width,
must also be examined.

It must be noted also that alternatives to the mean square error minimization method for

beam interpolation exist. The convolution method employed by Bernecky [2], for example,
while not as accurate as the MSE minimization method, is computationally much faster.

17




REFERENCES
[1] Louis Scharf, Statistical Signal Processing, Addison-Wesley, Reading, MA, 1991, p. 274.

[2] W. Robert Bernecky, “Range Focused K -w Beamforming of a Line Array,” NUWC-NPT

Technical Memorandum 980118, Naval Undersea Warfare Center Division, Newport, RI,
25 September 1998.

18




APPENDIX A
VECTOR AND MATRIX DEFINITION FOR
NON-SHADING-INCLUDED COEFFICIENTS

Sometimes, it is of interest to obtain focusing-steering coefficients that don’t include the
shading weights. It can be shown that this can be simply implemented by using a different
definition than (5) and (6) for the vectors ¢ and s and the matrices C and S. These are
stated here without derivation:

N N N T
c = [wacosvi(l),sz?cosvi(Z),---,wa cosvi(L)} ,

i=1 i=1 i=1

N N N T
s = [wasinvi(l),wasinvi(Q),‘--,wasinvi(L)} ,

i=1 i=1 i=1

N

[C]pq = wa COS[’Ui (q) - Uz(p)] = [C]qp7
7,]=vl

[S]pq = wa Sin[vi(Q) - ’Uz(p)] = _[S]qp'
i=1

The formula used to compute the coefficients is equation (9) in the main text.

A-1 (A-2 blank)




APPENDIX B
MATLAB CODE FOR COEFFICIENT COMPUTATIONS

% MATLAB CODE TO OBTAIN BEAM/K INTERPOLATION/FOCUSING COEFFICIENTS
%
% AUTHOR: Sami Deeb, CODE 2123

function coefficients=gen_coeff(N,M_fft,M,f,d,c,R0,R,cos_thO,cos_th,shad_embded)

% FUNCTION WHICH USES M AVAILABLE LINE-ARRAY SINGLE-FREQUENCY BEAMS, STEERED TO
% GIVEN DIRECTIONS, AND FOCUSED AT GIVEN RANGES, MEASURED AT ONE FREQUENCY

% VALUE, TO PRODUCE A NEW BEAM STEERED TO A DESIRED DIRECTION AND FOCUSED AT

% A DESIRED RANGE.

%

%N NUMBER OF ARRAY ELEMENTS
% M_fft THE SMALLEST RADIX-2 NUMBER THAT IS LARGER THAN THE NUMBER OF ELEMENTS
% £ BEAM/BEAMPATTERN FREQUENCY

% d ELEMENT SEPARATION

% ¢ SPEED OF SOUND

% M NUMBER OF COEFFICIENTS (ODD) ,

% cos_th 1xM VECTOR DENOTING THE COSINE OF ANGLES WHERE THE AVAILABLE

% BEAMS ARE STEERED TO.

% cos_thO COSINE OF ANGLE OF DESIRED BEAM

% R 1xM VECTOR REPRESENTING THE RANGE WHERE THE AVAILABLE BEAMS HAVE
% BEEN FOCUSED TO. '

% RO RANGE OF DESIRED BEAM

% shad_embded DENOTES WHETHER THE GENERATED COEFFICIENTS SHOULD INCLUDE THE
% SHADING OPERATION (shad_embded=’y’) OR NOT (shad_embded=’n’)

%

% sphr_td(element_coordinate,cos(th),R,c) A FUNCTION THAT COMPUTES THE TIME

% DELAY OF A WAVE FRONT TRAVELING AT SPEED ¢, INCIDENT ON THE ARRAY AT

% AN ANGLE WHOSE COSINE IS cos_th, AND FROM A RANGE R, AT AN ARRAY

% ELEMENT, DEFINED BY ITS COORDINATES element_coordinate.

shade = taylor(N,23,6); % TAYLOR SHADING SL=23 dB, nbar = 6
shade = shade(:)’/sum(shade); % CONVERT TO ROW/NORMALIZE ~ 1xN
zero_pad = zeros(1l,(M_f£ft-N)/2); % LEFT AND RIGHT ZERO-PADDING ARRAY
shade = [zero_pad,shade,zero_pad]; % ZERO-PADDED 1xM_fft TAYLOR ARRAY
uniform = [zero_pad,ones(1,N),zero_pad]; % ZERO-PADDED 1xM_£fft UNIFORM ARRAY
shade_sq = shade."2; % 1xM_£fft

if (shad_embded == ’n’) CC_SS = shade_sq; cc_ss = shade_sq; %CC_SS: 1xM_fft

B-1




'else CC_SS = uniform; cc_ss = shade; hce_ss: 1xM_fft
end '

elmnt = d*[O:M_fft-l]-(M_fft~1)*d/2; %#COMPUTING ELEMENT COORDINATES
\'s = zeros(M_fft,M);

tmp_CC = zeros(M_fft,M,M); tmp_SS = zeros(M_fft,M,M);

cC = zeros(M,M); Ss = zeros(M,M);

col_ones = ones(M,1);

for m=1:M_fft JELEMENT TIME DELAY/PHASE COMPUTATION LOOP
V(m, :)=2*pi*f*(sphr_td(elmnt (m),cos_thO,R0,c)- ...
sphr_td(elmnt (m),cos_th,R,c));
end

for m=1:M_fft JELEMENT LOOP

temp = col_ones*V(m,:); %temp : MxM MATRIX OF IDENTICAL ROWS
temp2 = temp - temp’; htemp2 = V(m,j) - V(m,i)
tmp_CC(m,:,:) = CC_SS(m)*cos(temp2);
tmp_SS(m,:,:) = CC_SS(m)*sin(temp2);

end

% SUMMING tmp_CC AND tmp_SS OVER THE FIRST DIMENSION REPRESENTING ELEMENTS —---

CC = reshape(sum(tmp_CC),M,M); SS = reshape(sum(tmp_SS),M,M);

cc = (cc_ss*cos(V))?; ss = (cc_ss*sin(V))’; %ss & cc: Mx1
inv_CC = CC\eye(size(CC)); . »inv_CC = inv(CC);
a=(CC+85% (CC\SS) )\ (cc-8S*(CC\ss)); Ya= inv(CC+SS*inv_CC*SS)* (cc-SS*inv_CC*ss) ;
b= -CC\(ss+SS*alpha); %b= - inv_CCx(ss+SS*alpha);

coefficients = a + ixb; TMx1
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